Spinal inhibitory effects of cardiopulmonary afferent inputs in monkeys: neuronal processing in high cervical segments.

نویسندگان

  • Margaret J Chandler
  • Jianhua Zhang
  • Chao Qin
  • Robert D Foreman
چکیده

Noxious stimulation of spinal afferents inhibits primate spinothalamic tract (STT) neurons in segments distant from the region of afferent entry. Inhibitory effects of cardiopulmonary sympathetic afferent (CPSA) stimulation remain after C(1) transection but disappear with spinal transection between C(3) and C(7). We hypothesized that spinal inhibitory effects produced by CPSA stimulation are processed by neurons in C(1)-C(3) segments. One purpose of this study in anesthetized monkeys was to determine whether chemical activation of high cervical neurons reduced sacral STT cell responses to colorectal distension (CRD) and urinary bladder distension (UBD). First, effects and interactions of pelvic and cardiopulmonary visceral afferent inputs were determined in 10 monkeys on extracellular activity of sacral STT neurons recorded in deep dorsal horn. CRD and UBD increased activity in 95 and 91% of sacral STT neurons, respectively. CPSA and cardiopulmonary vagal stimulation decreased activity in 84 and 56% of STT neurons, respectively. CPSA stimulation decreased CRD-evoked activity in six of eight sacral STT neurons and decreased UBD-evoked activity in five of eight STT neurons tested. Excitatory amino acid application at C2 segment decreased CRD-evoked responses in 7 of 10 sacral STT neurons and decreased UBD-evoked responses in 9 of 12 STT neurons. The second purpose of this study was to examine responses of C(1)-C(3) descending propriospinal neurons to stimulation of cardiopulmonary afferent fibers. If C(1)-C(3) neurons process CPSA input to suppress STT transmission, then CPSA stimulation should excite C(1)-C(3) neurons with descending projections. Effects of thoracic vagus nerve stimulation also were examined. Vagal stimulation inhibits STT neurons in segments below C(3) but excites C(1)-C(3) STT neurons; we theorized that vagal inhibition of sensory transmission might relay in high cervical segments and, therefore, excite C(1)-C(3) descending propriospinal neurons. Extracellular discharge rate was recorded for C(1)-C(3) neurons antidromically activated from thoracic or lumbar spinal cord in 24 monkeys. CPSA stimulation increased activity of 16 of 45 neurons and inhibited one cell. Thoracic vagus stimulation increased activity of 20 of 43 neurons and inhibited one cell; stimulation of abdominal vagus fibers did not affect activity of six of six cells that were excited by thoracic vagal input. Mechanical stimulation of somatic fields excited 30 of 41 neurons tested. All neurons activated by visceral input received convergent somatic input from noxious pinch of somatic receptive fields that generally included the neck and upper body; 11 C(1)-C(3) propriospinal neurons did not respond to any afferent input examined. Results of these studies were consistent with the idea that modulation of spinal nociceptive transmission might involve neuronal connections in high cervical segments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiopulmonary sympathetic input excites primate cuneothalamic neurons: comparison with spinothalamic tract neurons.

Stimulation of cardiopulmonary sympathetic afferent fibers excites thoracic and cervical spinothalamic tract (STT) cells that respond primarily to noxious somatic stimuli. Neurons in dorsal column nuclei respond primarily to innocuous somatic inputs, but noxious stimulation of pelvic viscera activates gracile neurons. The purpose of this study was to compare effects of thoracic visceral input o...

متن کامل

Chemical activation of cervical cell bodies: effects on responses to colorectal distension in lumbosacral spinal cord of rats.

We have shown that stimulation of cardiopulmonary sympathetic afferent fibers activates relays in upper cervical segments to suppress activity of lumbosacral spinal cells. The purpose of this study was to determine if chemical excitation (glutamate) of upper cervical cell bodies changes the spontaneous activity and evoked responses of lumbosacral spinal cells to colorectal distension (CRD). Ext...

متن کامل

Intrapericardiac injections of algogenic chemicals excite primate C1-C2 spinothalamic tract neurons.

Extracellular potentials of 38 C1-C2 spinothalamic tract (STT) neurons in anesthetized monkeys (Macaca fascicularis) were examined for responses to intrapericardiac injections of an algogenic chemical mixture (adenosine, 10(-3) M; bradykinin, prostaglandin E(2), serotonin, histamine, each 10(-5) M). Chemical stimulation of cardiac/pericardiac receptors increased activity of 21 cells, decreased ...

متن کامل

Responses and afferent pathways of superficial and deeper c(1)-c(2) spinal cells to intrapericardial algogenic chemicals in rats.

Electrical stimulation of vagal afferents or cardiopulmonary sympathetic afferent fibers excites C(1)--C(2) spinal neurons. The purposes of this study were to compare the responses of superficial (depth <0.35 mm) and deeper C(1)--C(2) spinal neurons to noxious chemical stimulation of cardiac afferents and determine the relative contribution of vagal and sympathetic afferent pathways for transmi...

متن کامل

Vagal afferent inhibition of spinothalamic cell responses to sympathetic afferents and bradykinin in the monkey.

Effects of stimulating the left thoracic vagus nerve on the responses of spinothalamic neurons to electrical stimulation of cardiopulmonary sympathetic afferent fibers and to intracardiac injections of bradykinin were determined. Experiments were performed on 39 monkeys (Macaca fascicularis) tranquilized with ketamine and anesthetized with alpha-chloralose. The 30 spinothalamic cells studied ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 2002